大家好,如果你们想深入了解关于按比分配是平均分吗的问题,那么请继续阅读下去。在这篇文章中,我会为大家提供全面的知识,并且会尽可能地回答你们的问题。
平均分和按比分配的区别
含义不同:平均分是按比例分配中的一个特例,表示按照相等分数来分。按比分配是一种按比例分配 在现在的九年制义务教育就开了这门课,划在数学里吧,分数与比的关系。应用不同:每2个一份,就要拿2个,这2个 要把2个放在一起成一堆。这样2个,2个地平均分。
思路一:平均分法。总数是360本,按照3:4:5的比分配,可以看做六年级分别得到3份、4份、5份。也就是说把这批书平均分成了3+4+5=12份,可求得每一份是360÷12=30本。

教学重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。 教学难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。 教学准备:课件。 教学过程: 情境导入 课件出示:女生与男生的人数比是5:7。
按比分配应用题这类应用题实际上与之前学过的平均分问题、归一问题、分数应用题的解题方法和思路是如出一辙的。尤其是比和分数本来就有着千丝万缕的联系,比的应用题完全可以转化成分数应用题来解例如:2:3,就是2份比3份,可以是4和6,6和9。
从复习平均分中导入,让学生明白实际生活中有些实际问题不是平均分,有时需要按照一定比进行分配,从而引出本节课的内容,让学生明白按比例分配的意义。
按比例分配是不是平均分配
含义不同:平均分是按比例分配中的一个特例,表示按照相等分数来分。按比分配是一种按比例分配 在现在的九年制义务教育就开了这门课,划在数学里吧,分数与比的关系。应用不同:每2个一份,就要拿2个,这2个 要把2个放在一起成一堆。这样2个,2个地平均分。
按比例分配和平均分配是两种不同的分配方式。打个比方来说如果两个人做工,然后进行平均分配。那么就是除以二两个人所得的工资是一样的。而按比例分配,如果两个人都在做工作的工,肯定是不一样多。根据两个人的工作效率不同,所以他们所得的工资也就不同。
按比例分配就是将一个整体按照比例分为相应比例的部分,而平均分配就是按照等比例分配。简单的说,二八分就是按照2:8的比例分配,四六分就是按照4:6的比例进行分配,等比分配就是各占的比例是一样的,比如1:1,或者1:1:1。平均分配是比例分配的特殊形式。
含义不同 按比例分配的定义在日常生活中,常常需要把一定的数量按照一定的比例来进行分配,这种分配方法称为按比例分配。按比例分配是比的概念的一种应用。平均数是这批数据的和除以数据总次数后所得的商。
平均分配:将4555元平均分配给三个人,每个人分得:4555÷3等于15133元。按比例分配:三个人的分配比例为2:3:4,即第一个人分得的金额是第二个人的2倍,第三个人分得的金额是第二个人的4倍,按照比例计算每个人分得的金额。
《按比分配的实际问题》教学反思
1、月23日上午第一节,在六一班上了《按比分配的实际问题》公开课。课堂教学让我对此次授课有一定的反思。
2、教学情况记载:六年级数学,“按比分配的实际问题”已教过n次,拿到教材初读一遍,自作聪明进行如下处理:以练习十二第3题主题,逐步拓展。救生员与游客共56人,每条船上有1名救生员和7名游客,一共有多少游客?多少名救生员?学生用平均分,转化成分数应用题顺利解决。
比的化简和比的应用手抄报怎么画
按比例分配问题有不同解法,主要有三种:一是把比看作分得的份数,用先求出每一份的方法来解二是把比化为分数,用分数乘法来解三是用比例知识来解较早的算术课本通常采用第三种方法,按比例分配的名称由此而来。
思维导图在正式绘制以前,一般会先简单对内容进行梳理,以便确立主题以及有个相对清晰的思路,方便具体梳理内容。通过人教版六年级数学上册“比”单元的学习,发现知识点分为比的认识;比、分数、除法的联系;比的化简;比的基本性质;比的应用五个部分。
把比的前项与后项的小数点同时向右移动相同的位数,直到变成正数,再根据题目同时除与它们的公因数,化简。方法:主要就是看清是哪个量与哪个量的比,在做。这个一定要牢记,我就因为犯了这样的错,好好的100没了。还要注意:一个比可以写成除法,分数形式,做题时要学会融会贯通,适时的转换。
一条路全长24千米,分为上坡和下坡两段,车甫走两段路的速度比是2:3走...
分钟。分析:如上坡时间和下坡时间相同,速度分别为2千米每分钟和三千米每分钟。则:2x+3x=24 解得 x=24/5=8分钟。
铺路队铺一条路,每天铺5千米,7天铺好全长的5/8。这条路全长多少千米?五年级参加数学竞赛,女生有12人,相当于男生参赛人数的2/3。
一段路分为上坡,平路,下坡三段,各段路程长的比是1:2:3,某人走这段路每段速度比是4:5:6。
路长48千米,上坡平坡下坡路长比为1:2:3,所以上坡长8千米,平坡长16千米,下坡长24千米,下坡速度为每小时6千米,下坡时间为24除以6=4小时,上坡平坡下坡用的时间比是3:4:5,所以总时间为4/5*(3+4+5)=6个小时。
你好!解:设甲车速度为3x,那么乙车为2x 240/(3x+2x)=4 20x=240 x=12 甲速:36千米/小时 乙速:24千米/小时 如果本题有什么不明白可以追问,如果满意请点击右上角好评并“采纳为满意回答”如果有其他问题请采纳本题后,另外发并点击我的头像向我求助,答题不易,请谅解,谢谢。
怎样让学生掌握按比例分配问题的不同解法
1、指导学生分析,总数是多少,总份数是多少,所占比例是多少,引导自己总结解题策略,举一反三,最后必定掌握解题技巧。 加强对按比例分配应用题解题思路的训练 按比例分配应用题之所以比较难学是由于应用题本身的复杂性,由于小学生年龄小,无法开展系统性的应用题训练,使得很多学生面对问题无从下手。
2、结合具体事例,经历解决简单按比例分配问题的过程。 理解按比例分配的意义,会解答已知比例和总量,求部分量的简单按比例分配问题。 感受按比例分配在生产、生活中的广泛应用,激发学生学习数学的兴趣。 教学重点: 掌握按比例分配问题的结构特点和解题思路。 教学难点: 正确分析、灵活解决按比例分配的实际问题。
3、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法; 培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人; 通过实例使学生感受到数学来源于生活,生活离不开数学。 教学重点: 正确理解按比例分配的意义。
感谢各位看客,文章到此结束,希望可以帮助到大家。